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This paper first reviews the various methods of calculation of the transfer integral in mixed valence compounds.
The different physical effects affecting the electron transfer, namely overlap, through bond delocalization,
relaxation and polarization of molecular orbitals, and correlation contributions are described and discussed.
Illustrative model problems are proposed, and the ability of the various treatments to incorporate these physical
effects is studied.

1. Introduction

Mixed-valence compounds are fascinating molecular archi-
tectures for both experimentalists and theoreticiens.1,2 Their
interest comes from the existence of an unpaired electron which
can be located on two equivalent and remote sites A and B.
One may speak of a nearly degenerate problem, with two

states of different symmetry, g and u, of close energies, if the
electron is delocalized between these two sites and if the
symmetry of the nuclear frame is maintained. One may also
speak of versatile or highly polarizable systems since a small
perturbation, such as an external electric field, may localize the
unpaired electron. The reorganization of the nuclear conforma-
tion may also be a localizing perturbation, it may stabilize a
localized form A+ ... B (i.e., trap the hole (or the electron) on
one site). The electronic delocalization, which spreads the
charge on the two centers, tends to maintain the symmetry, since
its effect is maximum for symmetrical geometries, while the
nuclear reorganization localizes the charge (see for instance,
refs 3 and 4).
In principle the value of the transfer integral may be affected

by the conformational relaxations of the partners, which break
the symmetry. However, this effect is rather small (cf., for
instance, ref 5) and it is usual1,2,6 to concentrate on the
symmetrical situations to study the electronic factors and the
dependence on the intersystem distance.
The present paper is centered on the delocalization factor (i.e.,

the amplitude of the energy splitting between the two nearly
degenerate states, g and u) insymmetricalsituations. It tries
to analyze the electronic factors governing the amplitude of this
small energy difference and to discuss the relevance of the
various ab initio methods of quantum chemistry to evaluate this
interaction.
Section 2 presents the diverse levels of descriptions of the

two relevant states, with increasing sophistication. Section 3
concentrates on the different physical effects, which are
exemplified on model problems, and shows the required
flexibility of the method to properly treat these physical effects.

2. Methods of Calculation of the Transfer Integral

2.1. The Two-State Model. The problem consists of the
calculation of the energy difference between two eigenstates of
different symmetry,1,2 sayφg andφu. At a zeroth-order level,
two orbitalsg andu play a dominant role. They define two
equivalent orbitalsa andb, which are localized essentially on
two equivalent sites, A and B.

Depending on the nature of the systems, one may see the
zeroth-order description of the problem as a one-electron in two-
orbital problem,

or as a three-electron in two-orbital problem,

(In these determinants, the subscript between parentheses refers
to the number of active electrons.) Hence, the zeroth-order
active space may be reduced to two orbitals.
The zeroth-order energies of the two states are

and in symmetrical systems,φa0 andφb0 are degenerate,

The coupling integral tab, usually called Hab in electron transfer
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theories,2 is related to the kinetic constant of the electron transfer
process that occurs between the centers A and B.
2.2. Single Determinantal Descriptions.For purely mo-

noelectronic Hamiltonians, such as the extended Hu¨ckel Hamil-
tonian,H ) ∑ih(i), the energy difference reduces to a difference
between monoelectronic energiesεg andεu:

wherena is the number of active electrons. Such a Hamiltonian,
which frequently gives correct orders of magnitude, only
incorporates the kinetic energy (scaled on the overlap) and
exclusion effects, ruled through the orthogonalization.
When going to self-consistent single determinantal descrip-

tions, one usually cannot rely on the monoelectronic energies
of the neutral ground state, which would be of the type

since the energy of the virtual orbitalu is calculated in the field
of thenc + 2 electrons, wherenc is the number of core electrons,
while εg is calculated in the field ofnc + 1 electrons. This
bias destroys the desired evenness between the two states, and
can be avoided, for instance, using the orbital energies of the
lowest triplet state:

Another possibility may consist of using the four-electron
configuration

and Koopmans’ theorem. This procedure should be avoided
when the four-active electron configuration introduces two
excess electrons, in which case the orbitals inφ(4)

0 become
exceedingly diffuse and meaningless, if nonminimal basis sets
are used.
A better procedure is to perform variational restricted open-

shell Hartree-Fock (ROHF) calculations for bothφg
0 andφu

0,
which imply the correct number of active electrons (i.e., the
static electrostatic field). The resulting active MOs are less
(respectively more) diffuse than those of the triplet stateφ(2)

3

for the one (respectively three) electron problem, and the core
orbitals are optimized in the specific field of the active electrons
in the considered state.
Unrestricted Hartree-Fock (UHF) calculations are possible

as well, introducing the spin polarization of the closed shells
and lowering the energies by a small quantity, which in general
is much weaker than the transfer integral. The disadvantage is
the concomitant spin contamination.
The reader should be aware of another problem: the

symmetry-breaking dilemma. In many cases, when the transfer
integral is weak compared to the polarization energy,3 one
obtains a lower energy for a localized symmetry-broken solution:

wherea′ ) a + λb, λ , 1. The polarization energy of the
inactive electrons by the localized hole (or particle) may be
greater than the polarization by the delocalized symmetry-
adapted hole (or particle)g or u, and

Thus, one obtains two degenerate solutions,φ(1)a
HF and

whereb′′ ) b + λa, and where the core orbitals are polarized
oppositely to those ofφ(1)a

HF . The calculation of a first-order
evaluation of the transfer integral is difficult

since it requires the calculation of the overlap and Hamiltonian
interaction between two nonorthogonal determinants.4 These
matrix elements could be evaluated by using the corresponding
orbital transformation proposed by King et al.7 This transfor-
mation permits the orthogonalization of the two sets of
eigenvectors and the evaluation oftab.8

If independent variational calculations for both states are
performed, the core orbitals are different for the g and u states
and the inclusion of the correlation must be performed on both
states using two different MO sets. This means that one must
calculate a large correlation energy, including all double
excitations (at least), in a very large CI, with possible errors in
the balance of the treatment of both states.
To avoid this problem, one may be tempted to use a common

and balanced set of MOs by performing a state-average
CASSCF calculation,5,9,11 optimizing the sum of the energies
of the two states g and u (i.e., imposingEg0 + Eu0 to be
minimum). The core orbitals are then optimized with the
appropriate number of active electrons, but not for a specific
hole. For one active electron, one uses a mean Fock operator,

such as that for any pair of inactive occupiedi and virtual r
orbitals, the extradiagonal elements of the matrixF in the basis
of this set of MOs are (cf. Chart 1):

2.3. Correlated Descriptions. Starting from the corre-
sponding determinantsφg andφu one may calculate the second-
order correction to the energy in a Møller-Plesset expansion.
It is easy to see that the inactive double excitations (ij f rs),
wherei, j are occupied molecular orbitals or holes andr, s are
virtual orbitals or particles, give the same contributions in the
two second order correctionEg(2) andEu(2), (Chart 2):

Hence, one may conceive a difference dedicated CI which
involves the two references (i.e., the CAS) and all semiactive
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simple and double excitations (i.e., excluding the purely inactive
double excitations, which are the most numerous).10 The size
of that DDCI space scales such asn0 nV

2+n02 nV, wheren0 and
nV are the number of inactive occupied and virtual MOs,
respectively. This has been proposed by Sanz and Malrieu5 to
treat electron transfer problems (see also ref 11). The DDCI
strategy has been successfully used to study magnetic problems
(i.e., the calculation of the weak energy differences between
the lowest states of polyradicalar compounds) and for the
calculation of the optical spectrum of closed-shell molecules.12

It has been proposed recently to iterate the DDCI process,
calculating mean quasinatural orbitals at each step, then
performing a new DDCI calculation with these new orbitals.13

The IDDCI results become independent of the starting MOs,
the quality of which is questionable. This idea may be applied
to mixed-valence problems as well. Another strategy consists
of using dedicated MOs, which are designed for the calculation
of the searched energy difference.11

As a further step one may consider a CAS-SDCI calculation
for both states, incorporating now the inactive double excitations.
This CI has to be made size consistent by an appropriate self-
consistent size-consistent dressing (SC)2 CAS-SDCI.14 More
sophisticated methods can be considered, such as coupled-cluster
with singles and doubles (CCSD) for open-shell problems.15 It
is also possible to perform equation of motion (EOM) calcula-
tions16 on the top of a CCSD of the closed-shell problem. The
exact solution in the basis is of course the full CI (FCI).

3. Physical Factors

3.1. Overlap Effects. The integraltabbetween two localized
orbitalsa andb is frequently approximated17 by

whereSab is the overlap integral,〈a|b〉, εa and εb being the
localized orbital energies. This suggests an exponential decrease
of the transfer integral with the distance18 between the two active
localized orbitalsa andb,

provided that the orbitals have an appropriate exponential
decrease. If Gaussian type orbitals are used, the decrease will
be artificially more rapid (∼exp(-âRab2). This exponential
decrease appears on two model problems, Li2

+ (1 active
electron) (Figure 1) and Be2+ (three active electrons) (Figure
2), whatever the level of calculation. In both cases, extended
Gaussian basis sets were used, and for quite large distances the
Gaussian orbitals impose an exp(-âRab2) decrease.
The same logic explains orientational factors, for instance

between two 2p atomic orbitals. One should notice here the
possible role of the intramolecular overlap in the intermolecular
transfer integral. Consider for example, the linear (Li2)2+ and
the (Li2)2- problems in minimal basis sets (Scheme 1).
The occupied orbital in Li2 is

for molecule A and

for molecule B.
For an (Li2)2+ problem the localized wave functions for both

situations are

and neglecting all interactions except those betweens2 ands3,
if S) S12 ) S34:

Considering now the (Li2)2- problem, one introduces the orbitals

tab ) kSab
εa + εb

2

tab∼ λexp-âRab

σa )
2s1 + 2s2

x1+ S12

σb )
2s3 + 2s4

x1+ S34

Figure 1. Overlap effects in a one-electron two-site model problem.
Dependence of the transfer integral value on the distance between the
lithium atoms, for the system Li2+. Left: ln tab vs Rintra. Right: ln tab
vsRintra2. The behavior is independent of the sophistication level of the
calculations. All of them were performed using triple-ú quality basis
plus polarization functions.

Figure 2. Overlap effects in a three-electron two-site model problem.
Dependence of the transfer integral value on the distance between the
beryllium atoms, for the system Be2+. Left: ln tab vs Rintra. Right: ln
tab vsRintra2. The reduction oftab values observed at DDCI and SDCI
levels with respect to ROHF results is due to the correlation of active
electrons (see Section 3.5), effects that are not present in the case of
the Li2+ system. All the calculations were performed using triple-ú
quality basis plus polarization functions.

SCHEME 1
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and the wave functions for the active electrons localize in A
and B respectively, are:

and the intermolecular transfer integral can be expressed as

Hence,

(i.e., the transfer integral is larger for negative ions than for
positive ones). For a fixed distance between atoms 2 and 3 in
the above model, the absolute value of the transfer integral for
the positive ion will increase when the intramolecular distance
increases, while it will decrease for the negative ions. This rule
is exemplified on the (Li2)2+/- problem (Figure 3) and on the
(ethylene)2+/- problem (Figure 4). In both of them,R is the
intramolecular distance, expressed in atomic units. An expo-
nential behavior with this parameter is found and also the
mentioned relationship between S andtab. Theπ nature of the
intramolecular bond in the case of the (ethylene)2

+/- systems
makestabmore sensitive to little variation of the intramolecular
distance, than in the (Li2)2+/- problem, for which the interatomic
overlap is larger.
All these overlap effects are correctly included at the most

elementary levels of calculations (EHT, Koopmans, ...).
3.2. Through Bond Delocalization. The coupling between

two sites may proceed through the bonds connecting them, for
instance organic ligands between two metallic centers. This is
again a delocalization effect, which will be larger when the
ligand is highly delocalized. The conjugated hydrocarbons
deserve special attention, since molecular devices for molecular
electronics have been proposed, in which two transition metal
atoms of different degrees of oxidation are bridged by polyenic
chains.19

It is known that the conjugated hydrocarbons, which do not
involve odd-membered rings, are called alternant and present
interesting features. One may divide the atoms into two sets
(starred and unstarred), in such a way that each starred atom is
surrounded by unstarred ones and vice versa. The so called
pairing rule (Coulson, Longuet-Higgins perturbation theory)20
establishes a one-to-one correspondence between each bonding
MO æi and an antibonding MOæi* such that, in the Hu¨ckel
Hamiltonian, the energies have opposite signs,εi + εi* ) 0,
and that the coefficients of the starred atoms are identical inæi

and æi*, while those of the unstarred atoms have opposite
signs: cir ) ci* r, for r starred, andcir ) - ci*r , for r unstarred.
If we now consider two sites bearing the orbitalsa and b,
connected respectively with atomsr andsof the ligand (Scheme
2) by equal matrix elements of the Fock operatorFar ) Fbs ) F
the degenerateg ) (a + b)x2 andu ) (a - b)x2 MOs will
be perturbed by their interaction with the delocalized MOs of
the ligandæi andæi*, where

The perturbation will be

and it is easy to show that

and then

whereεg, εu, εi, andεi* are respectively the orbital energies of
g, u, æi andæi*.
If εg ) εu ) (εi + εi*)/2 (i.e., if the substitute orbital energies

εg andεu are in the middle of the band gap of the ligand) the
two denominators are equal. Ifr ands are atoms of the same
parity the numerators are equal and,Eg(2) ) Eu(2) ) 0, the two
levels (a + b)x2 and (a - b)x2 remain degenerate,tab = 0.
On the contrary if the atomsr ands have opposite parities,

the interactions withæi andæi* act in opposite directions on
the (a + b)/x2 and (a - b)/x2 orbitals and increase|tab|. As

Figure 3. Intramolecular overlap effects over the transfer integral
values in (Li2)2+/- systems. Linear response oftab versus the intramo-
lecular distance Li-Li. The tab values were obtained using Koopmans’
theorem and minimal basis sets for lithium atoms.
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a consequence,tabwill be small for meta substitutions in benzene
or for mirror substitutions in naphthalene, as shown in Table 1.
The increase oftab value of system3 with respect to1

(Scheme 3) is due symmetry reasons. It is possible to see too
that the polarization of inactive orbitals induces a systematic
reduction oftab values (difference between ROHF and DDCI-3
results), effects that will be discussed below.
It is worth noticing here that the role of through bond

delocalization has been established by Hoffmann et al.21 30 years
ago. The rules proposed here may receive other rationalizations
(see for example refs 1a, 1b, 22, 23).
3.3. Relaxation and Polarization of Active Orbitals.

Starting from theg or u orbital of the neutral dimer, for instance
in its triplet stateæ3 ) |gu|, the orbitals of the positive ion,g
or u, will be more concentrated, while they will become more
diffuse in the negative ion. This phenomenon involves both
relaxation and polarization of the orbitals.
Let us consider the Li2 problem, whereg andu are essentially

built on the 2sa and 2sb orbitals of the neutral atoms. The
relaxation, which is not directional, goes through a mixing with

3s type orbitals, which contracts the orbitals in the positive ion,
dilates them in the negative ion. The polarization distorts the
distribution around each atom and proceeds through excitations
toward 2pz atomic orbitals. It is quite easy to demonstrate that
this mixing of the 2s and 2pzatomic orbitals increases the density
in the interatomic region for the positive ion, while it increases
the density outside of the bond in the negative ion (Figure 5).
These phenomena act on both the g and u states. In Table 2,
the values fortab obtained at different levels are shown. The
above mentioned effects can be isolated using basis sets of
different quality. The polarization effects come from single
excitations (l f l ( 1) and can be analyzed comparing the
results obtained with the (33) and (33/3) basis sets. The
relaxation effects are the result of single excitations (n f n +
1), with l constant, and it is possible to see them analyzing the
difference between the values found with (33/3) and (6111/11)
basis sets. All results are obtained for an 8a0 interatomic
distance. They confirm that (i) adding a polarization function
increases the transfer integral for positive ions and diminishes
it for negative ones, as expected from the distortion of the
orbitals (Figure 5), and that (ii) going to multiple-ú basis
decreases the transfer integral for positive ions and increases it
for negative ones, as expected from the contraction/dilatation
of the active orbitals. However, the polarization appears to have
a greater impact than the relaxation. It is worth noting the
excellent accuracy of the DDCI calculations.
The contraction versus the dilatation of the orbitals will have

a major effect on the (Li2)2+/- systems, since they will reduce
the absolute value of the transfer integral in the positive ion of
the dimer, increase it in the negative ion, working in the same
direction as the previously discussed intramolecular overlap
effect. The results are presented in Table 3. The polarization

Figure 4. Intramolecular overlap effects over the transfer integral
values in (ethylene)2+/- systems. Linear response oftab versus the C-C
distance in the ethylene molecule. Thetab values were obtained using
Koopmans’ theorem and minimal basis sets for carbon and hydrogen
atoms. The decay/increase oftab values are similar to that obtained in
(Li 2)2+/- systems, while the intramolecular distance variation here is
one order lower than in the lithium systems. Theπ nature of the
intramolecular bond in ethylene systems explains this behavior.

SCHEME 2

TABLE 1: Role of the Through Bond Delocalizationa

molecule Hu¨ckel Koopmans ∆ROHF DDCI-3

o-dimethylene-benzene+ (1) -0.295â 6682 8318 6688
m-dimethylene-benzene+ (2) 0. 153 1469 1260
p-dimethylene-benzene+ (3) -0.311â 9821 13138 9586
1,5-dimethylene-

naphthalene+ (4)
0. 55 1875 1194

1,6-dimethylene-
naphthalene+ (5)

-0.188â 5574 9347 6810

a Values of the transfer integral for conjugated hydrocarbons.
(Notation between parentheses corresponds with Scheme 3). The values
of tab are expressed in cm-1, except for these obtained through Hu¨ckel
theory, which are inâ units. DZV basis functions have been used for
the benzene atoms and STO-3G for the naphthalene derivatives.

SCHEME 3

Figure 5. Electronic density maps of active orbitals for Li2
+/- systems.

Effects of the polarization (see text). The maps were obtained using
(6111/11) basis sets and FCl wave functions.
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2s f 2p ((33) vs (33/3) results) produces an increase of the
intramolecular electron density in the case of a positive system,
and intermolecular for the negative ion. This means in terms
of the expression of section 3.1, biggertab- values and smaller
tab+ respect to the (33) results.
The relation between the (33/3) and (6111/11) results presents

the same behavior than in the Li2
+/- problem. The relaxation

2sf 3s produces a contraction of the orbitals in the positive
system. This contraction should in principle lead to a lower
intermolecular overlap and a decrease oftab+, but the corre-
sponding reduction of the intramolecular overlap prevails,
increasingtab+. For negative system, the opposite effect is
working.
3.4. Static and Dynamic Polarization of the Inactive

Orbitals. Starting from the HF MOs of the neutral systems,
the occupiedi and virtualr inactive orbitals satisfy Brillouin’s
theorem,

whereF0 is the Fock operator for the neutral ground stateφ0.
In the positive (or negative) ion, the static field created by the
hole (or the additional electron) will lead to a mixing of the
occupied and virtual inactive MOs.
For instance for

whereJg is the Coulomb operator associated with the orbitalg.
The second order contribution to the static polarization energy
for the g state is

In the integral

the last term may be neglected since theabdistribution is small,
a andb being far apart.
The ir distribution is at least dipolar, and is large only ifi

and r are located in the same region, for instance in the same
bond of a ligand. One may consider two extreme situations:

(i) The ligand is on the A‚‚‚B axis, outside of the AB segment
(Scheme 4a), then the two contributions〈i|Ja|r〉 and〈i|Jb|r〉 add
and one has a significant static polarization energy. (ii) The
ligand is on the A‚‚‚B axis at equal distance of A and B (Scheme
4b), then the two contributions cancel in〈i|Jg|r〉 and there is no
static polarization. The same is true for the u stateφ(1)u

0 since

Hence the static polarization does not contribute much to the
energy difference between the g and u states.
An important effect is the dynamical polarization which

proceeds through a simultaneous change of the active orbital
and thei f r inactive excitation (Chart 3).

where it is possible to demonstrate that

and then the second-order contribution to the dynamic polariza-
tion energy is

This dynamic polarization energy expresses the dynamic
response of the electrons of the ligand to the fluctuation of the
hole position. It will be large when the ligand is between the
two active sites A and B.
Such a phenomenon also exists in the u state (Chart 4),

TABLE 2: Values of tab in the Negative and Positive Ions Li2+/- a

Li2+ Li2-

basis Koop ROHF DDCI SD FULL Koop ROHF DDCI SD FULL

(33) 4850 4953 4955 4955 4955 4740 4741 4741 4741 4741
(33/3) 5059 6933 6927 6926 6927 4701 4703 2894 2896 2859
(6111/11) 4510 5928 5884 5866 5901 3987 3623 3433 3522 3410

aRelaxation and polarization effects on the value of the electron transfer integral (cm-1).

TABLE 3: Effects of the Relaxation and Polarization of
Active Orbitals on the Transfer Integral Value (in cm-1) on
(Li 2)2+/- Systems

basis Koop ROHF DDCI

(Li 2)2+ (33) 809 784 734
(33/3) 575 554 717
(6111/11) 739 768 807

(Li 2)2- (33) 2853 2612 2377
(33/3) 1053 4308 3217
(6111/11) 2875 3711 2780

SCHEME 4

CHART 3

CHART 4

〈i|Ju|r〉 ) 1/2〈i|Ja + Jb|r〉 - (ir ,ab)

Eir ,g
(2)d )

〈i ıjg|H|irju〉〈irju|H|i ıjg〉
εi - εr + εg - εu

〈irju|H|i ıjg〉 ) (gu,ir ) ) 1/2((aa,ir ) - (bb,ir )) )
1/2〈i|Ja - Jb|r〉

Eir ,g
(2)d ) 1/4

(〈i|Ja - Jb|r〉)2
εi - εr + εg - εu

〈i|F0|r〉 ) 0

âgφ0 ) φ(1)g
0

〈i|Fg+|r〉 ) 〈i|-Jg|r〉

Eir ,g
(2)s )

(〈i|Jg|r〉)2
εi - εr

〈i|Jg|r〉 ) 1/2(〈i|Ja|r〉 + 〈i|Jb|r〉) + (ir ,ab)
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which is slightly different fromEir ,g
(2)d since the denominators

are different. Remember that

hence,

The dynamical polarization of a bridging ligand for which〈i|Ja|r〉
) -〈i|Jb|r〉 will result in a decrease of the effective interaction
(in absolute value).

In Scheme 5, two model systems [Li2(H2)2]+/- are represented.
In A, the polarization induced over the H2 orbitals when the
hole (or particle) is in atoma is the same as when it is in atom
b. In B, the polarization of inactive orbitals has opposite signs
depending on where the hole (or particle) is. The polarization
of inactive orbitals produces no change intab value in model
A, while in model B a reduction oftab value is expected. This
effect involves only one occupied and one virtual inactive
orbitals, and could be taken into account with a DDCI strategy
over a space with two degrees of freedom restricted to a one
hole-one particle (DDCI-2, 1h-1p), (see Table 4). Increasing
the distance between the molecules of H2 and the lithium atoms
reduces the polarization of the orbitals of these molecules, and
then the difference between the ROHF and DDCI-2 values is
smaller than at a shorter distance.
It is worth noticing here that polarization is the origin of the

Hartree-Fock symmetry breaking3 mentioned in section 2.
Actually, if the charge is localized in site A, the polarization
energy is

whatever the position of the MOi with respect to A and B.
If it is close to A, the polarization is large, but there is no

counterpart of the polarization of the symmetrical MOi′ which
lies close to B,Ei′r′,a

(2)s ) 0. Hence, the static polarization of the
external ligands is twice as larger when the charge is localized
on one site than in the symmetry-adapted description,

For the internal ligands, which are at equal distance of A and
B, the static polarization by the localized charge will be large,
while the polarization by the symmetrical charge is zero. One
has, therefore, the following inequality between the static
polarization energies in the symmetry-broken and symmetry-
adapted descriptions,

The static polarization, being brought by single excitations, can
be obtained through a variational single determinant description.

One must notice that the symmetry-broken description looses
the benefit of the resonance between the left and right degenerate
solution. Hence the condition for the occurrence of a symmetry
breaking of the HF description is

However, it should be pointed out that adding the dynamical
polarization effect, (which is a correlation effect), the lacking
part of the polarization effect is obtained, since neglecting|Fab|
in front of |εi - εr|, one can see that the static polarization energy
in the localized description is the sum of the (static+ dynamic)
polarization energies in the symmetry-adapted description.

The whole discussion can be pictured in the Scheme 6.
As already mentioned in section 2, it is simpler to stay in the

symmetry-adapted description since the calculation of the
interaction between the two localized HF determinants is quite
difficult (and may be shown to be size inconsistent).
3.5. Correlation of Active Orbitals. Correlation of the

electrons occupying the active orbitals only takes place for the
three electrons in two MO problems (for instance, Li2

- or Be2+).
Since this problem can be seen as the resonance between|aajb|
and |abbh|, it is clear that the dynamical radial and angular
correlation will act on the electronic pair occupying instanta-
neously the same atom. If a is of 2s character, the radial

Eir ,u
(2)d )

〈i ıju|H|irjg〉〈irjg|H|i ıju〉
εi - εr + εu - εg

) 1/4
(〈i|Ja - Jb|r〉)2
εi - εr + εu - εg

εg - εu ) 2Fab

Eir ,u
(2)d - Eir ,g

(2)d ) Fab
(〈i|Ja - Jb|r〉)2

(εi - εr)
2 + 4Fab

2

Fab
eff ) Fab(1- 1/2

〈i|Ja - Jb|r〉2

(εi - εr)
2 )

Eir ,a
(2)s)

(〈i|Ja|r〉)2
εi - εr

Eir ,a
(2)s+ Ei′r′,a

(2)s = 2(Eir ,g
(2)s+ Ei′r′,g

(2)s )

|Epol,a(2)s | g 2|Epol,g(2)s |

SCHEME 5

TABLE 4: Effect of the Polarization of the Inactive Orbitals
over the Value of tab (cm-1)a

ion+ ion-

Li ‚‚‚H2 (Å) model A model B model A model B

4.23 ∆ROHF 1399 1126 1166 728
1h-1p 1398 1104 1167 715

4.01 ∆ROHF 1163 710 911 364
1h-1p 1164 676 919 356

aModels A and B refer to Scheme 5. The distance Li‚‚‚H2

corresponds to the separation between the H-H bound middle point
and Li atom. See text for details.

SCHEME 6

|Epol,a(2)s | g |Epol,g(2)s | + |Fab|
i.e., |Epol,a(2)s | g 2|Fab|

Epol,a
(2)s = Epol,g

(2)s + Epol,g
(2)d
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correlation is brought by excitations of the type (a aj f 3sa 3sja),
the angular correlation being obtained through excitations of
the type (a aj f 2pa 2pja) or to higher-l orbitals. Moreover, it is
well known that the dynamical correlation in the atom reduces
spatial extension of the electronic distribution, and therefore it
is expected that this type of correlation reduces the absolute
value of the transfer integral. This is illustrated on the Be2

+

system, comparing the column relative to HF (uncorrelated) with
the column concerning the DDCI results or higher levels in
Table 5.
From a perturbative point of view the effect on the transfer

integral is of third order, and may be visualized as a contribution
to the extradiagonal matrix element of an effective Hamiltonian
spanned by|aajb| and|abbh| respectively,|aajbbh| being the vacuum
reference (Chart 5). Another contribution of the correlation
involves a dispersive intermolecular interaction and an intramo-
lecular double excitation, with a hopping integral between the
virtual orbitals (Chart 6).
3.6. Semiactive Excitations.The correlation between the

active electron(s) on an atom and the other valence electrons
or the core electrons of the same atom essentially results in a
contraction of the active orbital and therefore in a reduction of
the absolute value of the transfer integral.
The correlation between the active electrons and the electrons

of the ligands will be essentially of dispersive character (i.e., it
goes through an interaction between the transition dipole of the
active electrons), for instance, (af pa) and a transition dipole
(l f l*) of the ligand electrons.
The corresponding quantity will, in general, be positive

sinceFpapb will be positive. Hence this correlation effect will
diminish the effective transfer integral (in absolute value) (Chart
7).

4. Conclusion

The purpose of this paper is essentially pedagogical. It tries
to show that quantum chemistry is not simply a tool to obtain
numerical values, comparing (hopefully well) with experiment,
but that it provides a way to analyze the leading physical

properties which govern the amplitude of an observable, here
the electron transfer integral in mixed valence architectures. It
is possible to judge the ability of a given method to take into
account these physical effects. While mean field calculations
are able to treat static effects (overlap, polarization, relaxation,
through bond delocalization effects, etc.), the inclusion of
dynamical responses requires the introduction of the fluctuations
brought by the electronic correlation. However, the examples
presented here confirm that reliable results may be obtained by
considering only the semiactive double excitations, and neglect-
ing the (most numerous) inactive double excitations (DDCI
method).
An open question concerns the ability of DFT methods to

reproduce the correlation effects. One may expect that such
methods are able to reproduce the difference betweentab+ (one
electron on two sites) andtab- (three electrons on two sites). It
is not clear whether they will reproduce the dynamical polariza-
tion effects, which involves the fluctuation of the electric field
on the ligands. This analysis, analogous to the one recently
performed for the magnetic coupling constants in diradicals,24

should be the subject of further work.
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