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This paper first reviews the various methods of calculation of the transfer integral in mixed valence compounds.
The different physical effects affecting the electron transfer, namely overlap, through bond delocalization,
relaxation and polarization of molecular orbitals, and correlation contributions are described and discussed.
lllustrative model problems are proposed, and the ability of the various treatments to incorporate these physical
effects is studied.

1. Introduction 2. Methods of Calculation of the Transfer Integral
Mixed-valence compounds are fascinating molecular archi-  2.1. The Two-State Model. The problem consists of the
tectures for both experimentalists and theoreticiehsTheir calculation of the energy difference between two eigenstates of

interest comes from the existence of an unpaired electron whichdifferent symmetry;2 say ¢4 and¢y. At a zeroth-order level,

can be located on two equivalent and remote sites A and B. two orbitalsg andu play a dominant role. They define two
One may speak of a nearly degenerate problem, with two €quivalent orbitals andb, which are localized essentially on

states of different symmetry, g and u, of close energies, if the two equivalent sites, A and B.

electron is delocalized between these two sites and if the

symmetry of the nuclear frame is maintained. One may also delocalized: g = a+t b, u= a—b
speak of versatile or highly polarizable systems since a small V2 V2
perturbation, such as an external electric field, may localize the _ g+u g—u
unpaired electron. The reorganization of the nuclear conforma- localized: a=— b=—
tion may also be a localizing perturbation, it may stabilize a V2 V2

localized form At ... B (i.e., trap the hole (or the electron) on Depending on the nature of the systems, one may see the

one site). The electronic delocalization, which spreads the - X
S .~ zeroth-order description of the problem as a one-electron in two-
charge on the two centers, tends to maintain the symmetry, since

its effect is maximum for symmetrical geometries, while the orbital problem,

nuclear reorganization localizes the charge (see for instance,

refs 3 and 4).

A In principle the.value of the'transfer integral may be' affected ¢?1)a = |coreal, ¢?1)b = |coreb)
y the conformational relaxations of the partners, which break

the symmetry. However, this effect is rather small (cf., for o a5 a three-electron in two-orbital problem,

instance, ref 5) and it is usdd&® to concentrate on the

0 _ o _
by = lcoreg|, ¢y, = |coreul

symmetrical situations to study the electronic factors and the %, = |coreu’g|, ¢%,, = |coreg?ul
. . () ! (Bu
dependence on the intersystem distance.
i izati i.e. 0 _ 2 0 _ 2
The present paper is centered on the delocalization factor (i.e., B = | corebZal, $%y, = |corea b|

the amplitude of the energy splitting between the two nearly

degenerate states, g and u)symmetricalsituations. Ittries  (n these determinants, the subscript between parentheses refers
to analyze the electronic factors governing the amplitude of this {5 the number of active electrons.) Hence, the zeroth-order
small energy difference and to discuss the relevance of the 5.ive space may be reduced to two orbitals.

various ab initio methods of quantum chemistry to evaluate this  1ne zeroth-order energies of the two states are
interaction.

Section 2 presents the diverse levels of descriptions of the EC = 90 H|¢°0
two relevant states, with increasing sophistication. Section 3 9 9 9
concentrates on the different physical effects, which are EO — Ejs°|H| quD

] u u

exemplified on model problems, and shows the required

flexibility of the method to properly treat these physical effects. ;4 in symmetrical systems® and ¢ are degenerate
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theorie<? is related to the kinetic constant of the electron transfer Thus, one obtains two degenerate solutiqﬁga and
process that occurs between the centers A and B.
2.2. Single Determinantal Descriptions. For purely mo- ¢(H1';b = |coré' b"|
noelectronic Hamiltonians, such as the extendédkduHamil-
tonian,H = Yh(i), the energy difference reduces to a difference whereb” = b + Aa, and where the core orbitals are polarized
between monoelectronic energigsandey: oppositely to those of},. The calculation of a first-order
evaluation of the transfer integral is difficult

Eg — Ep = (¢, — €)(2 — n) = 2(2— n)@h|b0] T .
[Dyal HId @ [Dayal @y

B

wheren, is the number of active electrons. Such a Hamiltonian, o TS

which frequently gives correct orders of magnitude, only 1= aalday

incorporates the kinetic energy (scaled on the overlap) and _ _ _ o
exclusion effects, ruled through the orthogonalization. since it requires the calculation of the overlap and Hamiltonian

When going to self-consistent single determinantal descrip- interaction between two nonorthogonal determinanfhese
tions, one usually cannot rely on the monoelectronic energies Matrix elements could be evaluated by using the corresponding

of the neutral ground state, which would be of the type orbital transformation proposed by King et’alThis transfor-
mation permits the orthogonalization of the two sets of
¢?2) = |cored?| eigenvectors and the evaluationtgf®

If independent variational calculations for both states are

since the energy of the virtual orbitaiis calculated in the field ~ Performed, the core orbitals are different for the g and u states
of then. + 2 electrons, wherg; is the number of core electrons, ~and the inclusion of the correlation must be performed on both
while 4 is calculated in the field ofi, + 1 electrons. This  States using two different MO sets. This means that one must
bias destroys the desired evenness between the two states, arfeficulate a large correlation energy, including all double
can be avoided, for instance, using the orbital energies of the €Xcitations (at least), in a very large ClI, with possible errors in

lowest triplet state: the balance of the treatment of both states.
To avoid this problem, one may be tempted to use a common
¢?2) = |coreg u| = —|corea b| and balanced set of MOs by performing a state-average

CASSCEF calculatiof;>1! optimizing the sum of the energies

of the two states g and u (i.e., imposiig® + E° to be
minimum). The core orbitals are then optimized with the
appropriate number of active electrons, but not for a specific
hole. For one active electron, one uses a mean Fock operator,

Another possibility may consist of using the four-electron
configuration

¢buy = Icoreg’u’| = |corea’t’|
: . F=F,+F
and Koopmans’ theorem. This procedure should be avoided g !
when the four-active electron configuration introduces two ¢,ch as that for any pair of inactive occupiednd virtualr
excess electrons, in which case the orbitalspffy become  orpitals, the extradiagonal elements of the mafrin the basis
exceedingly diffuse and meaningless, if nonminimal basis sets f this set of MOs are (cf. Chart 1):
are used.

A better procedure is to perform variational restricted open- CHART 1
shell Hartree-Fock (ROHF) calculations for botlpg and ¢8, <i|F|r>=0
which imply the correct number of active electrons (i.e., the
static electrostatic field). The resulting active MOs are less
(respectively more) diffuse than those of the triplet s

for the one (respectively three) electron problem, and the core ‘ A v U
AN AREEAVAL SR VAR &
g

ie, < i|2n+J+3, | r>=0

orbitals are optimized in the specific field of the active electrons

in the considered state. TR u
Unrestricted HartreeFock (UHF) calculations are possible

as well, introducing the spin polarization of the closed shells

and lowering the energies by a small quantity, which in general

is much weaker than the transfer integral.

the concomitant spin contamination.

=0

2.3. Correlated Descriptions. Starting from the corre-
. - sponding determinantf, and¢, one may calculate the second-
The disadvantage iSorger correction to the energy in a MahePlesset expansion.
It is easy to see that the inactive double excitatiaps~(rs),
The reader should be aware of another problem: the \ynerei i are occupied molecular orbitals or holes and are
symmetry-breaking dilemma. In many cases, when the transfer, - orbitals or particles, give the same contributions in the

integral is weak compared to the polarization enérgyne two second order correctioB® and E.®, (Chart 2):
obtains a lower energy for a localized symmetry-broken solution:

HE CHART 2
$ja = ICOTE &l

wherea = a + ib, A < 1. The polarization energy of the . D s@ ;
inactive electrons by the localized hole (or particle) may be J )
greater than the polarization by the delocalized symmetry- g "

adapted hole (or particley or u, and

E _<E Hence, one may conceive a difference dedicated CI which
Pl Hfgu involves the two references (i.e., the CAS) and all semiactive
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simple and double excitations (i.e., excluding the purely inactive
double excitations, which are the most numerdis¥he size

of that DDCI space scales suchmsn,2+ng? n,, whereng and

n, are the number of inactive occupied and virtual MOs,
respectively. This has been proposed by Sanz and Makdeu
treat electron transfer problems (see also ref 11). The DDCI

strategy has been successfully used to study magnetic problems

(i.e., the calculation of the weak energy differences between
the lowest states of polyradicalar compounds) and for the
calculation of the optical spectrum of closed-shell molectdes.
It has been proposed recently to iterate the DDCI process,
calculating mean quasinatural orbitals at each step, then
performing a new DDCI calculation with these new orbitéls.
The IDDCI results become independent of the starting MOs,
the quality of which is questionable. This idea may be applied
to mixed-valence problems as well. Another strategy consists
of using dedicated MOs, which are designed for the calculation
of the searched energy differente.

As a further step one may consider a CAS-SDCI calculation
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Figure 1. Overlap effects in a one-electron two-site model problem.
Dependence of the transfer integral value on the distance between the
lithium atoms, for the system &fi. Left: In tap VS Rowar Right: Intap

for both states, incorporating now the inactive double excitations. VS Rnw’- The behavior is independent of the sophistication level of the

This CI has to be made size consistent by an appropriate self-

consistent size-consistent dressing (SCAS-SDCI* More

sophisticated methods can be considered, such as coupled-cluster

with singles and doubles (CCSD) for open-shell problémis.

is also possible to perform equation of motion (EOM) calcula-
tions!® on the top of a CCSD of the closed-shell problem. The
exact solution in the basis is of course the full CI (FCI).

3. Physical Factors

3.1. Overlap Effects. The integral,, between two localized
orbitalsa andb is frequently approximatéd by

€, 1T €,
b2

tab = ksa

where Sy is the overlap integrali@/bl] €5 and ¢, being the

localized orbital energies. This suggests an exponential decrease

of the transfer integral with the dista€between the two active
localized orbitalsa andb,

t, ~ Aexp PRe

provided that the orbitals have an appropriate exponential

decrease. If Gaussian type orbitals are used, the decrease wilf

be artificially more rapid £exp(pRa?). This exponential
decrease appears on two model problems;t L(il active
electron) (Figure 1) and Be (three active electrons) (Figure
2), whatever the level of calculation. In both cases, extended

Gaussian basis sets were used, and for quite large distances the

Gaussian orbitals impose an exyf{Ra,?) decrease.

The same logic explains orientational factors, for instance
between two 2p atomic orbitals. One should notice here the
possible role of the intramolecular overlap in the intermolecular
transfer integral. Consider for example, the lineap)d!i and
the (Lip),~ problems in minimal basis sets (Scheme 1).

The occupied orbital in Liis

for molecule A and

calculations. All of them were performed using trifleguality basis
plus polarization functions.

Overlap effects, Be,”
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Figure 2. Overlap effects in a three-electron two-site model problem.
Dependence of the transfer integral value on the distance between the
beryllium atoms, for the system Be Left: In ta VS Rnra. Right: In

tab VS Rintrs?. The reduction oty values observed at DDCI and SDCI
levels with respect to ROHF results is due to the correlation of active
lectrons (see Section 3.5), effects that are not present in the case of
he Li;" system. All the calculations were performed using triple-
quality basis plus polarization functions.

SCHEME 1

Li-2fieeeli-Byj
1 2 3 4

for molecule B.
For an (Lb)2* problem the localized wave functions for both

situations are

0+ __ —. 0+ __ —
¢a - |Oa0b0b|1 ¢b - |Oa0aob|

and neglecting all interactions except those betwsemdss,
if S= Sp= S

tZSZZ%
1+s

+f\/
ab

Considering now the (LJ,~ problem, one introduces the orbitals



3662 J. Phys. Chem. A, Vol. 102, No. 21, 1998 Calzado et al.

231 — 232 2% — 234 Intramolecular overlap effects in (Liz)z"‘
= B oo ,
J1-S, V1-$S, E
and the wave functions for the active electrons localize in A E

and B respectively, are:
75

0,— __ 2 2 . 0— __
po” =|o2op ol ¢n = o2k atl

a

a
+F
c

and the intermolecular transfer integral can be expressed as

t252253
~1-s
Hence, 50 60 70 8.0
Rin(m(a.u.)
ty 1+S Figure 3. Intramolecular overlap effects over the transfer integral
= values in (Lp)."~ systems. Linear response tgf versus the intramo-
ta 1-S lecular distance L+Li. The ta values were obtained using Koopmans'’
theorem and minimal basis sets for lithium atoms.
(i.e.., .the transfer integ.ral is !arger for negative ions than for @,=cr+..+cs
positive ones). For a fixed distance between atoms 2 and 3 in
the above model, the absolute value of the transfer integral for @ = Cpu I ...+ CusS

the positive ion will increase when the intramolecular distance
increases, while it will decrease for the negative ions. This rule The perturbation will be
is exemplified on the (lJ),*'~ problem (Figure 3) and on the

(ethylene)™~ problem (Figure 4). In both of thenR is the [F|gf x| F|gr

intramolecular distance, expressed in atomic units. An expo- EE,Z) =
nential behavior with this parameter is found and also the TE T € T &g €
mentioned relationship between S @pgd Thes nature of the QIE U i IE1u
intramolecular bond in the case of the (ethyleng) systems E@ — IFI _ IF|
makegap more sensitive to little variation of the intramolecular ) ,Z € —¢€ ¢ — €.
distance, than in the (b~ problem, for which the interatomic Lo o
overlap is larger. and it is easy to show that
All these overlap effects are correctly included at the most
elementary levels of calculations (EHT, Koopmans, ...). [H|F|gl= L(c- +c); OFjul= L(c- —c)
3.2. Through Bond Delocalization. The coupling between N o V2 '

two sites may proceed through the bonds connecting them, for

instance organic ligands between two metallic centers. Thisis  [i*|F|gl= L(ci*r + Cug;  [OF|Flul= L(cm — Civd
again a delocalization effect, which will be larger when the V2 V2
ligand is highly delocalized. The conjugated hydrocarbons
deserve special attention, since molecular devices for molecular2nd then
electronics have been proposed, in which two transition metal 5 5
atoms of different degrees of oxidation are bridged by polyenic @ _ 1, =2 (c, +Cy) (Civr T Cing)
chains!® By’ ="1F e — ¢ N . —¢
It is known that the conjugated hydrocarbons, which do not oo b
involve odd-membered rings, are called alternant and present (c, — Cis)2 (G; — Civ 2
interesting features. One may divide the atoms into two sets Eﬂz) = 1/2|:2 z —
(starred and unstarred), in such a way that each starred atom is — €€, €, €
surrounded by unstarred ones and vice versa. The so called
pairing rule (Coulson, LonguetHiggins perturbation theors) whereeg, €, €, andeix are respectively the orbital energies of
establishes a one-to-one correspondence between each bonding u, ¢; and gi*.
MO ¢; and an antibonding M@;* such that, in the Hokel If eg=€eu= (& + €)/2 (i.e., if the substitute orbital energies
Hamiltonian, the energies have opposite signst ¢* = 0, €g andey are in the middle of the band gap of the ligand) the

and that the coefficients of the starred atoms are identicgj in  two denominators are equal. nfands are atoms of the same
and ¢*, while those of the unstarred atoms have opposite parity the numerators are equal aigd® = E/ = 0, the two

signs: ¢ = G, for r starred, andi; = — cj«r, for r unstarred. levels @ + b)v/2 and @ — b)v/'2 remain degeneraté, = 0.

If we now consider two sites bearing the orbitalsand b, On the contrary if the atomsands have opposite parities,
connected respectively with atomands of the ligand (Scheme
2) by equal matrix elements of the Fock operdtgr= r,, = F Gy £ G = G, T Cixg

the degeneratg = (a + b)v/2 andu = (a — b)v'2 MOs will _ _ _ _ o
be perturbed by their interaction with the delocalized MOs of the interactions withp; and ¢* act in opposite directions on
the ligandg; and ¢;*, where the @+ b)/v/2 and & — b)/v/2 orbitals and increasiés|. As
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Rinva tau) 3s type orbitals, which contracts the orbitals in the positive ion,
Figure 4. Intramolecular overlap effects over the transfer integral dilates them in the negative ion. The polarization distorts the
values in (ethyleng}’~ systems. Linear responsetgfversus the GC distribution around each atom and proceeds through excitations

distance in the ethylene molecule. Thevalues were obtained using  toward 2p atomic orbitals. Itis quite easy to demonstrate that
Koopmans'’ theorem and minimal basis sets for carbon and hydrogenthis mixing of the 2s and 2@tomic orbitals increases the density
atoms. The decay/increasetgf values are similar to that obtained in in the interatomic region for the positive ion, while it increases

(Li)2*~ systems, while the intramolecular distance variation here is - . - L .
oné 2order lower than in the lithium systems. Thenature of the the density outside of the bond in the negative ion (Figure 5).

intramolecular bond in ethylene systems explains this behavior. These phenomena act on both the g and u states. In Table 2,
the values fot,, obtained at different levels are shown. The
SCHEME 2 above mentioned effects can be isolated using basis sets of
a, different quality. The polarization effects come from single
: excitations ( — | £ 1) and can be analyzed comparing the
" \/\/\/\/\;s results obtained with the (33) and (33/3) basis sets. The
b relaxation effects are the result of single excitatioms+{n +
1), with | constant, and it is possible to see them analyzing the
TABLE 1: Role of the Through Bond Delocalizatior? difference between the values found with (33/3) and (6111/11)
molecule Hekel Koopmans AROHF DDCI-3 basis sets. All results are obtained for araginteratomic
o-dimethylene-benzene (1) —0.2955 6682 8318 6688 distance. They confirm that (i) adding a polarization function
m-dimethylene-benzene (2) 0. 153 1469 1260 increases the transfer integral for positive ions and diminishes
p-dimethylene-benzene (3) —0.318 9821 13138 9586 it for negative ones, as expected from the distortion of the
1,5-dimethylene- 0. 55 1875 1194 orbitals (Figure 5), and that (ii) going to multipie-basis
1 Gngpht':f]"?”e" “) 018 £574 9347 6810 decreases the transfer integral for positive ions and increases it
' r]amfha?/e?{:_@ 189 for negative ones, as expected from the contraction/dilatation

. . of the active orbitals. However, the polarization appears to have
aValues of the transfer integral for conjugated hydrocarbons. P bp

(Notation between parentheses corresponds with Scheme 3). The value& greater impact than the relaxation. l_t is worth noting the
of tu» are expressed in criy except for these obtained througfidkel excellent accuracy of the DDCI calculations. _
theory, which are ifg units. DZV basis functions have been used for The contraction versus the dilatation of the orbitals will have

the benzene atoms and STO-3G for the naphthalene derivatives.  a major effect on the ().~ systems, since they will reduce
the absolute value of the transfer integral in the positive ion of

a consequencey, will be small for meta substitutions in benzene the dimer, increase it in the negative ion, working in the same

or for mirror substitutions in naphthalene, as shown in Table 1. direction as the previous]y discussed intramolecular over|ap

The increase ofap value of system3 with respect tol effect. The results are presented in Table 3. The polarization
(Scheme 3) is due symmetry reasons. It is possible to see too
that the polarization of inactive orbitals induces a systematic Li2+ system Li2- system

reduction ofty, values (difference between ROHF and DDCI-3
results), effects that will be discussed below.

It is worth noticing here that the role of through bond
delocalization has been established by Hoffmann €t30.years
ago. The rules proposed here may receive other rationalizations
(see for example refs 1a, 1b, 22, 23).

3.3. Relaxation and Polarization of Active Orbitals.
Starting from theg or u orbital of the neutral dimer, for instance e
in its triplet statep® = |gu|, the orbitals of the positive iorg
or u, will be more concentrated, while they will become more
diffuse in the negative ion. This phenomenon involves both -
relaxation and polarization of the orbitals. . )

Let us consider the Liproblem, whergy andu are essentially  Figyre 5. Electronic density maps of active orbitals fopt/i- systems.

built on the 2, and %, orbitals of the neutral atoms. The Effects of the polarization (see text). The maps were obtained using
relaxation, which is not directional, goes through a mixing with (6111/11) basis sets and FCI wave functions.
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TABLE 2: Values of ty, in the Negative and Positive lons Lit/~ 2

Li 2+ Lio™
basis Koop ROHF DDCI SD FULL Koop ROHF DDCI SD FULL
(33) 4850 4953 4955 4955 4955 4740 4741 4741 4741 4741
(33/3) 5059 6933 6927 6926 6927 4701 4703 2894 2896 2859
(6111/11) 4510 5928 5884 5866 5901 3987 3623 3433 3522 3410

a Relaxation and polarization effects on the value of the electron transfer integral)(cm

TABLE 3: Effects of the Relaxation and Polarization of SCHEME 4
Active Orbitals on the Transfer Integral Value (in cm~1) on A
(Lip)2™~ Systems L——_.4

basis Koop ROHF DDCI i—r i—r

(Liz)z* (33) 809 784 734 a b
(33/3) 575 554 717
(6111/11) 739 768 807 CHART 3

(Liz)> (33) 2853 2612 2377
(33/3) 1053 4308 3217

(6111/11) 2875 3711 2780 @ i O i
g r i
2s— 2p ((33) vs (33/3) results) produces an increase of the

intramolecular electron density in the case of a positive system, g
and intermolecular for the negative ion. This means in terms
of the expression of section 3.1, bigdgy values and smaller CHART 4
tap' respect to the (33) results. "}\j R
The relation between the (33/3) and (6111/11) results presents | N/
the same behavior than in the,ti~ problem. The relaxation ,-Or
2s— 3s produces a contraction of the orbitals in the positve | ..
system. This contraction should in principle lead to a lower - g{\fu
intermolecular overlap and a decreasetgf, but the corre-
sponding reduction of the intramolecular overlap prevails,
increasingt,,™.  For negative system, the opposite effect is
working.
3.4. Static and Dynamic Polarization of the Inactive

L X.-]
> >
J°]

(i) The ligand is on the A-B axis, outside of the AB segment
(Scheme 4a), then the two contributidiig,|r Candi) Jy|r Jadd
and one has a significant static polarization energy. (ii) The
Orbitals. Starting from the HF MOs of the neutral systems, ligand is on the A--B ax[s at.equal distance of A and B (Spheme
the occupied and virtualr inactive orbitals satisfy Brillouin’s 4b)'_ then th_e tvyo contributions pancel[ﬂiﬂgm:kand there _'S no
theorem, static polarization. The same is true for the u stﬁlﬁj since

MEYrC= 0 @13, Ir 0= ,03, + J,IrO— (ir,ab)
whereF? is the Fock operator for the neutral ground sigée Hence the static polarization does not contribute much to the

In the positive (or negative) ion, the static field created by the energy difference between the g and u states.
hole (or the additional electron) will lead to a mixing of the An important effect is the dynamical polarization which

occupied and virtual inactive MOs. proceeds through a simultaneous change of the active orbital
For instance for and thei — r inactive excitation (Chart 3).
A _ 0 . .
ag¢0_¢(1)g E.(z)dz [ﬂTgIHlII’uDIFu|H|IlgD
g €~ 6T e ¢

@R, IrC= [ —J,Ir0
where it is possible to demonstrate that
whereJy is the Coulomb operator associated with the orlgtal
The second order contribution to the static polarization energy [jry|H|iTg0= (guir) = Y/((aajir) — (bbijir)) =
for the g state is 1
1,mJ, — Jir0

2
Ef=—"— and then the second-order contribution to the dynamic polariza-

ir,g o
G & tion energy is
In the integral 2
(2)d= 1/ ([[”Ja_ Jb”D
@ 3,Ir 0= (@ J,|r - [, r D + (ir ,ab) T e —e t ey €,
the last term may be neglected since dhalistribution is small, This dynamic polarization energy expresses the dynamic
a andb being far apart. response of the electrons of the ligand to the fluctuation of the

Their distribution is at least dipolar, and is large onlyi if hole position. It will be large when the ligand is between the
andr are located in the same region, for instance in the sametwo active sites A and B.
bond of a ligand. One may consider two extreme situations:  Such a phenomenon also exists in the u state (Chart 4),
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(@, — JIrDy?
€ —€te ,—€

E@d _ [rufH|irgtirg|H|iTut]_ ’
ir,u PIE— f
i r u

9 g9
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SCHEME 5

]

o ) @d ) @ ® ®© ]
which is slightly different fromEjy since the denominators H -
are different. Remember that ! T
€ €= 2F,, A B
TABLE 4: Effect of the Polarization of the Inactive Orbitals
hence, over the Value oft,, (cm™1)2
ion* ion~
@3, — Jy|r P
Ei(rZLd - Ei(rZ)gd = ab“a—zblgz Li-+-H (A) model A model B model A model B
(6 — &)+ 4F5 423  AROHF 1399 1126 1166 728
1h—1p 1398 1104 1167 715
The dynamical polarization of a bridging ligand for whi@J,|r 4.01 AROHF 1163 710 911 364
= —[i)Jp|rOwill result in a decrease of the effective interaction 1h—-1p 1164 676 919 356

(in absolute value).
[, — JIr
(éi - 6r)2

In Scheme 5, two model systems §(Hl,),] '~ are represented.
In A, the polarization induced over the;Hrbitals when the
hole (or particle) is in atoma is the same as when it is in atom
b. In B, the polarization of inactive orbitals has opposite signs
depending on where the hole (or particle) is. The polarization
of inactive orbitals produces no changetip value in model
A, while in modé B a reduction oft, value is expected. This
effect involves only one occupied and one virtual inactive
orbitals, and could be taken into account with a DDCI strategy
over a space with two degrees of freedom restricted to a one
hole-one particle (DDCI-2, 1hlp), (see Table 4). Increasing
the distance between the molecules gfdd the lithium atoms
reduces the polarization of the orbitals of these molecules, and
then the difference between the ROHF and DDCI-2 values is
smaller than at a shorter distance.

It is worth noticing here that polarization is the origin of the
Hartree-Fock symmetry breakirfgmentioned in section 2.
Actually, if the charge is localized in site A, the polarization

Fob=Fa1= ">

aModels A and B refer to Scheme 5. The distance:-H;
corresponds to the separation between theHHbound middle point
and Li atom. See text for details.
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One must notice that the symmetry-broken description looses
the benefit of the resonance between the left and right degenerate
solution. Hence the condition for the occurrence of a symmetry
breaking of the HF description is

. 2 2
energy is IEEJO)faI > IEfm)fgl + |Fapl
2 .
cos_ (@D e, |[Egoal = 2IFy

Ir,a ei _ Er
whatever the position of the MOwith respect to A and B.

If it is close to A, the polarization is large, but there is no
counterpart of the polarization of the symmetrical M@hich
lies close to BEZS, = 0. Hence, the static polarization of the
external ligands is twice as larger when the charge is localized
on one site than in the symmetry-adapted description,

(2)s (2)s 2)s
Eir,a + Ei’r’,a g

= 2(E™

ir,g + Ei(

However, it should be pointed out that adding the dynamical
polarization effect, (which is a correlation effect), the lacking
part of the polarization effect is obtained, since negleciifag

in front of |¢; — ¢/|, one can see that the static polarization energy
in the localized description is the sum of the (statidynamic)
polarization energies in the symmetry-adapted description.

E(Z)s

pola

~ E@s

2)d
pol,g + E( )

polg

The whole discussion can be pictured in the Scheme 6.

For the internal ligands, which are at equal distance of A and As already mentioned in section 2, it is simpler to stay in the
B, the static polarization by the localized charge will be large, symmetry-adapted description since the calculation of the
while the polarization by the symmetrical charge is zero. One interaction between the two localized HF determinants is quite
has, therefore, the following inequality between the static difficult (and may be shown to be size inconsistent).
polarization energies in the symmetry-broken and symmetry- 3.5. Correlation of Active Orbitals. Correlation of the
adapted descriptions, electrons occupying the active orbitals only takes place for the
three electrons in two MO problems (for instance; lor Bey™).
Since this problem can be seen as the resonance befagb¢n
and |ably, it is clear that the dynamical radial and angular
The static polarization, being brought by single excitations, can correlation will act on the electronic pair occupying instanta-
be obtained through a variational single determinant description. neously the same atom. If a is of 2s character, the radial

@0 ) = 2]ED%

|E polg
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TABLE 5: Be,* Problem. Correlation of Active Electrons.
Effect of the Interatomic Distance?

Calzado et al.

CHART 7

d@au)  Koop HF DDCI SD (S® FULL
8 2622 2535 2165 2206 2136 2079
10 768 722 612 622 610 603
12 208 186 155 158 155 152
@ Values in cm®.
CHART 5
properties which govern the amplitude of an observable, here
the electron transfer integral in mixed valence architectures. It
is possible to judge the ability of a given method to take into
account these physical effects. While mean field calculations
are able to treat static effects (overlap, polarization, relaxation,
through bond delocalization effects, etc.), the inclusion of
CHART 6 dynamical responses requires the introduction of the fluctuations

b

correlation is brought by excitations of the type (&8s 3%),
the angular correlation being obtained through excitations of
the type (a"a— 2p, 2p,) or to highert orbitals. Moreover, it is

brought by the electronic correlation. However, the examples
presented here confirm that reliable results may be obtained by
considering only the semiactive double excitations, and neglect-
ing the (most numerous) inactive double excitations (DDCI
method).

An open question concerns the ability of DFT methods to
reproduce the correlation effects. One may expect that such
methods are able to reproduce the difference betwgerfone
electron on two sites) ang,~ (three electrons on two sites). It

well known that the dynamical correlation in the atom reduces s not clear whether they will reproduce the dynamical polariza-
spatial extension of the electronic distribution, and therefore it tjg effects, which involves the fluctuation of the electric field

is expected that this type of correlation reduces the absolutegp the ligands. This analysis, analogous to the one recently

value of the transfer integral. This is illustrated on theBe
system, comparing the column relative to HF (uncorrelated) with
the column concerning the DDCI results or higher levels in
Table 5.

From a perturbative point of view the effect on the transfer
integral is of third order, and may be visualized as a contribution
to the extradiagonal matrix element of an effective Hamiltonian
spanned byae| and|ably respectively|aeb| being the vacuum
reference (Chart 5). Another contribution of the correlation
involves a dispersive intermolecular interaction and an intramo-
lecular double excitation, with a hopping integral between the
virtual orbitals (Chart 6).

3.6. Semiactive Excitations. The correlation between the

active electron(s) on an atom and the other valence electronsgl

performed for the magnetic coupling constants in diradi¢als,
should be the subject of further work.
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